
A MATHEMATICS DECODER RING

SIMULATION AND NATURE IN DESIGN

This isn’t really intended to teach you any math. It’s intended to be the start of a
field guide to the notation and ideas convenient for working to make qualitative sense
of scientific papers you encounter as you explore techniques and systems you’re excited
about.

It is a work in progress; if you have any suggestions, errata, or requests, contact
jesse@n-e-r-v-o-u-s.com. Or, if you’d like to volunteer to help to track down good
references, make diagrams that don’t suck, or volunteer your time as a proofreader,
send an email to jesse@n-e-r-v-o-u-s.com. For more information on the course
which it was originally developed for, check out
http://n-e-r-v-o-u-s.com/education
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1. vectors

the name the notation visually the idea the use

vector v, ~v, V Usually, people talk about vectors as representing
quantities that have “both a magnitude and a di-
rection.” So for example, a force being applied
somewhere, in some direction. Or a speed in a di-
rection (sometimes called a velocity). Vectors can
be a lot more general though, and thinking about
them as arrows that you move around and com-
bine in different ways is totally reasonable. One
of the most important things about them is that
their size and direction don’t change as you switch
between coordinate systems.

People usually use vectors for
indicating positions, forces, and
motion.

magnitude,
norm, length

‖v‖ This one is pretty simple: it’s honestly just the
length or size of the vector.

To talk about the size of what-
ever they’re representing with
vectors (e.g. speed/velocity, size
of force/force)



unit vector û, v It’s just a vector of length one. Usually, you’ll
see them when people are trying to simplify some
calculation.

Often, it’s convenient to be able
to get what portion or component
of a vector is pointing along a cer-
tain direction. In these cases, if
you take the dot product of a vec-
tor ~v with a unit vector point-
ing in some direction, you’ll get
the portion of ~v which is pointing
along the unit vector’s direction.

basis vectors î, k, ek A basis is a set of (usually, for convenience, unit)
vectors which you can multiply and add together
to get any other vector in your space. So for ex-
ample, you can multiply and use a combination
of unit vectors pointing along the x−, y−, and
z−axes to create any other vector in xyz− (a.k.a
Cartesian) coordinates.

Usually, people use basis vectors
to represent quantities and equa-
tions in a given coordinate sys-
tem. Each coordinate (e.g. x, y,
and z has a corresponding “com-
ponent.” Sometimes, you’ll also
see people take the dot product
between a basis vector and an-
other vector to find out how much
of the other vector is pointing
along the basis vector.

vector addition ~a+~b One way to imagine this is to start at the tail of
~a, walk along its length, and then to place ~b at its
head (keeping in mind that you can’t change the
orientation of a vector) and walk along its length.
~a+~b represents the vector that would connect your
starting point (~a’s tail) with your end point (~b’s
head).

Nothing I can think of beyond the
obvious.



vector subtrac-
tion

~a−~b Really, this is the same as ~a+(−~b), where the neg-
ative version of a vector (−~b) is simply the same
vector, but pointing in the opposite direction.

Still, nothing I can think of be-
yond the obvious.

scalar multipli-
cation

a~v, Av Multiplying a vector by a scalar can’t change the
vector’s direction, but it can change its length.
So, all 2~a does to ~a is make it twice as long. Note
that you can change the direction of a vector by
multiplying it by −1.

Err, scaling the length of vectors?

dot product,
inner product,
scalar product

a · b, 〈~v, ~u〉 The idea of the dot product is that it can tell you
the angle between two vectors. In some cases, it’s
easier to think about it as how much one vector
“points along” another—something often referred
to as the “projection” of one vector onto another.

People usually use the dot prod-
uct to either project one vec-
tor onto another (that is, to de-
scribe “how much” of one vec-
tor is pointing along another) or
equivalently, to determine the an-
gle between two vectors (and as a
special case, test if two things are
perpendicular).



cross product,
vector product

~a×~b Although it’s pretty annoying to compute, the
cross product is simple, conceptually: given two
vectors, it lets you find a third vector which is
perpendicular to the first two.

People most often use the cross
product to find a vector which is
perpendicular to two other vec-
tors. It also figures prominently
in the curl operator, which lets
you measure how much a vec-
tor field is curling around a given
point.

vector field V , W ; some-
times, V : S →
Rn

A vector field is a way of associating a vector with
every point in space. You can imagine it as a func-
tion which takes in a point in space, and gives you
back a vector to put at that point.

Vector fields are often used for
talking about how force fields
look in space, and relatedly, how
things (especially fluids) flow and
move around. If you’ve ever seen
those smoke visualizations of air-
planes in a wind tunnel, that’s
one way of thinking of a vector
field.



2. calculus

the name the notation visually the idea the use

derivative, dif-
ferentiation

dy
dx , d

dxf(x),
df
dx (x), dn

dx , f ′,
f (n), ḟ , f̈ ,
Dxf(x), Dxy,

At its most basic, a derivative measures how
quickly something is changing at a given point.
For a function, this is the same as talking about
the “slope of the tangent line”—that just means
that when a function is changing quickly, it has a
lot steeper slope, and when it changes slowly, that
it’s a lot flatter.

Derivatives and differentiation
show up everywhere. People use
derivatives to describe how dif-
ferent rates of change relate to
one another, to find the maxi-
mum and minimum of functions,
to do all sorts of neat stuff.

integral, integra-
tion, antideriva-
tive

∫
S
fdx,

∫ b

a
fdx,∫∫∫

V
fdxdydz

Conceptually, integrals are pretty simple: they tell
you how much area (or volume) is enclosed by a
function (or a surface). That’s why you hear peo-
ple talking about “area under the curve” all the
time. Amazingly, it also turns out that integrals
are kinda like the opposite of derivatives: the in-
tegral of a derivative of a function is that same
function (and vice versa).

People use integrals to do all
sorts of things: some of the
most common include finding the
area/volume of a curve/surface
and solving equations that have
derivatives in them.



partial deriva-
tive, directional
derivative

D~v, Dv, ∂u
∂x , fxy,

∂xf , f ′x
A partial derivative is pretty simple: when peo-
ple normally talk about derivatives, they’re talk-
ing about the change in one thing respect to an-
other (position with respect to time, y with respect
to x, whatever. If you have many variables—all of
which can change—a partial derivative lets you
answer the question, “When I hold v3 constant,
how much does v1 vary?” Another way of think-
ing about it is: when you move perpendicular to
one axis, how much does the function’s value on
the other axis change?

Partial derivatives are used to
describe how different rates of
change relate to one another. Of-
ten, you will have a system where
there are several different rela-
tionships between a handful of
rates of change, but whose re-
lationship can only be described
when you keep everything else
constant. (For example, the ra-
dius, height, and volume of a cone
are interrelated, but you can only
talk about the changes in rates
of change if you can say, “Well,
keeping the height constant, the
rate of change of the radius and
volume are related as . . . ”

divergence, div ∇ · v, div v The divergence is a way of talking about how much
a vector field points into or out of a given point.
Another way people say this is by describing it as
“How much is the vector field acting as a source
or a sink at a given point?”

For a handful of interesting rea-
sons, the divergence comes up
in a lot of mathematical descrip-
tions of physical laws—for ex-
ample, it features prominently
in Maxwell’s equations (the laws
which govern how electric and
magnetic fields behave).



gradient, grad ∇f , grad f The gradient takes a function (it’s usually has ≥ 3
dimensions) and gives you a vector field which tells
you—at every point—what direction the greatest
increase is in, and what the size of that increase
is. So if you imagine a function that tells you
the height of a hill at every point, the gradient at
each point would point in the direction of steepest
ascent.

The gradient is another tool that
shows up all the time in de-
scribing physical laws (especially
in fluid dynamics and thermody-
namics).

curl, rotor, rota-
tional

∇×v, curl v, rot
v

The curl operator tells you how much a given vec-
tor field is rotating (or curling) around a certain
point. You can kinda think of it as the extent
to which a vector field is whirlpooling around a
point. If you imagine your vector field as the flow
of water, the curl tells you how much (and in what
direction) a little boat would spin if you were to
place it at a given point.

The curl shows up a lot in discus-
sions of fluid flow, and is another
one of those operators that you
end up talking about a surpris-
ing amount when you’re writing
down physical laws (again, espe-
cially those which deal with fluids
or fluid-like things.

Laplacian,
Laplace opera-
tor

δf , ∇2f , ∇ · ∇f Intuitively, the Laplacian tells you how much the
value of something at a given point differs from
the average value of the values at that points’
neighbors. So if we’re talking about a function
F , that means that the Laplacian tells you how
much F (p0) differs from the average of F at all
the points around p0. Another way of saying this
is that the Laplacian tells you how much curvature
or curviness there is at every point in a surface or
function.

The Laplacian shows up a lot in
talking about systems which are
very efficient (that is, they do not
dissipate a lot of energy—they
are roughly conservative). This
includes everything from talking
about electrostatics to heat flow.



3. linear algebra

the name the notation visually the idea the use

matrix A, B, M Really, a matrix is just a way of holding a bunch of
numbers or other pieces of information and orga-
nizing them so that you can do some other types
of math with them.

Pretty much every topic has some
way of representing or discussing
it in such a way that it involves
a matrix or uses linear algebra
ideas.

transpose AT , A′, Atr, At The transpose of a matrix is just the matrix you’d
get if you took each row and turned it into a col-
umn (so the first row becomes the first column of
the transpose, the second row the second column,
and so on).

It shows up in a lot of matrix
math because it turns out to
have some convenient mathemat-
ical properties, but I don’t think
there are especially common uses.



Einstein [sum-
mation] notation

cix
i not that I can think of This is kinda annoying, but especially in physics

and linear algebra, you’ll see people use this as
shorthand to represent a sum over all possible val-
ues of an index variable. An index variable is just
a variable you use to keep track of the components
of some collection. For example, people often write
the nth element of a vector ~v as vn. According to
Einstein notation, when an index variable appears
twice in a single term, once in an upper (super-
script) and once in a lower (subscript) position, it
implies a sum over all the possible values of the
index variable.

For making summations more
convenient to write and (for some
people) easier to read. You don’t
really see this outside of physics
and linear algebra, though.

inverse A−1 uhh. . . The inverse (let’s call it B) of a matrix A is a
matrix such that AB = I. Keep in mind that I is
the closest thing linear algebra has to the number
one, so in some ways, you can think of the inverse
of a matrix as kind of like dividing by that matrix.
Or, if you’re thinking about the effect a matrix has
something, the inverse of that matrix undoes that
effect (for instance, if multiplying by one matrix
rotates a shape, multiplying by its inverse will un-
rotate it).

People use inverses for all sorts of
things—the most common use is
to undo the operation of a matrix.

identity matrix I1, I2, In The identity matrix is the closest thing linear al-
gebra has to the number on.

I’m not sure there is a most com-
mon use for it—it really does of-
ten function like the number one.



determinant det A, |A| The most geometric understanding of the determi-
nant is as a scale factor: if a matrix has a deter-
minant of two, that means that when that matrix
is applied to a set of points, it will double that set
of points’ area.

Three of the most common uses
for the determinant are using it
to find out whether a matrix is in-
vertible, to calculate volume, and
to scale different shapes (stretch-
ing them to make them bigger or
smaller).

eigenvector nothing
unusual—
just like normal
vectors

If you think about matrices as representing trans-
formations that you can apply to vectors, the
eigenvectors of a given matrix are those which
would not be rotated (though they may be scaled)
after the application of that matrix.

Eigenvectors are especially use-
ful in factoring matrices (that is,
writing a matrix M as the prod-
uct of other matrices).

eigenvalue λi If you think about matrices as representing trans-
formations that you can apply to vectors, the
eigenvalues of a given matrix are the scale factors
by which that matrix scales its eigenvectors.

It turns out these are really useful
in factoring matrices, too.


