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Abstract

We explore an opportunity to expand the stylistic variety of hand-
made and artisanal jigsaw puzzles through the appication of tech-
niques from natural simulation. Typical jigsaw puzzle designs
reflect the manufacturing constraints of die-cut, mass-production
methods. We generate novel families of puzzle forms by applying
a phase field approach to the simulation of dendritic solidification.
We extend existing models of solidification with multiphase meth-
ods to satisfy aesthetic and geometric considerations specific to jig-
saw puzzle design. We present examples of the resulting puzzle
forms and discuss possible extensions and refinements.
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1 Introduction

We present a system for generating jigsaw puzzle forms based on
a numerical simulation of dendritic solidification using phase field
methods. Many software packages exist which generate jigsaw puz-
zles [Google 2012]. Typically, these systems produce forms resem-
beling mass-produced, die-cut puzzles which have pieces laid out
on a rectangular grid with simple, rounded nodules on their bound-
aries. However, there is a tradition of handmade, artisanal jigsaw
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puzzles offering a much richer aesthetic variety [Williams 2004].
Each artist has their own cut style, often incorporating recognizable
figures called whimsies. The methods we present here explore the
opportuntiy for for artisanal algorithms as applied to jigsaw puz-
zles.

The branching forms exhibited by Laplacian growth are a natural
fit for the formal requirements of jigsaw puzzles’ intricate, inter-
locking pieces. Our system implements a phase-field model of den-
dritic crystal solidification to evolve the boundaries of an initial set
of pieces into interlocking shapes. This system enables us to create
one-of-a-kind jigsaw puzzles with their own, distinctive cut style.

2 Background

“Laplacian growth” refers to the evolution of a plane interface be-
tween two regions driven by the gradient of a harmonic field. These
processes typically produce fractal, branching structures which
have been studied in fields ranging from pure math [Mineev-We-
instein and Zabrodin 2001], microbial biology [Ben-Jacob et al.
1992], and urban planning [BattylT 1991], to physics [Krichever
et al. 2004][Hastings and Levitov 1998], and computer graphics
[Kim et al. 2007].

Some of these systems exhibit discrete growth—like diffusion lim-
ited aggregation [Barra et al. 2001]—and can act deterministically
or stochastically, as with dielectric breakdown models [Pietronero
et al. 1988]. Alternatively, the growth can be continuously defined
by a velocity field, as in the viscous fingering of Hele-Shaw cells
[Løvoll et al. 2004] or dendritic solidification [Family et al. 1987].

The aesthetic of and extensive literature surrounding dendritic so-
lidification drew us to the phenomena in designing puzzle pieces.
Dendritic solidification involves the growth of crystals in a super-
cooled environment, a mechanism underlying phenomena includ-
ing the formation of snowflakes and the engineered microstructure
of metal alloys. The simulation of such phenomena has been ex-
tensively studied, leading to numerous numerical methods: bound-
ary integral methods [Strain 1989], variational models [Almgren
1993], finite element methods [Zhao and Heinrich 2001], level
set methods [Sethian and Straint 1992] and phase-field methods
[González-Cinca et al. 2003].

Phase-field methods in particular have been widely applied to the
study of dendritic solidificiation in both 2D [Kupferman et al. 1994]
and 3D [Karma and Rappel 1998]. These methods avoid the algo-
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rithmic complexity of alternatives which require the explicit repre-
sentation of a moving, complex, geometric phase boundary. Adap-
tive grid methods have been used to increase the efficiency of these
methods [Provatas et al. 1999]. Phase-field methods have also been
used to extend this phenomena, e.g. implementing dendritic solidi-
fication with fluid flow [Jeong et al. 2001].

3 Methods

Our algorithm is based on Kobayashi’s application of phase-field
models to dendritic solidication [Kobayashi 1993] [Kobayashi
1994]. Phase-field models avoid explicitly representating bound-
aries by replacing a discontinuous phase transition with a smooth
transition in an order paramter p ∈ [0, 1] over a boundary of thick-
ness ǫ from 0 (solid) to 1 (liquid). The numerical results of this
model converge to those of the sharp interface representation as
ǫ → 0. Kobayashi’s model is well-suited to graphical applications
because of its incorporation of heuristic parameters which allow
one to trade physical correctness for flexibility.

3.1 Phase-field Model

The Allen-Cahn equation (Equation 1) represents the dynamics of
a non-conserved order parameter [Allen and Cahn 1979]. The dy-
namics of the phase field model are governed by an Allen Cahn
equation with a Ginzburg-Landau type free energy, which we nu-
merically implement with a finite difference, foward Euler method
on a regular grid.
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where ǫ is the diffuse boundary’s thickness, F is the potential driv-
ing our system, and τ is a small, positive constant. F is not physi-
cally motivated; it is a phenomenological representation of the de-
sired dynamics of the system. We choose a double-well potential
parametrized by the phase p and an independent variable m:
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Figure 1: Exemplary dynamics of the double-well potential created
by Equation 4 for F (p,m).

As shown in Figure 1, this potential drives the phase to either 0 or 1
when m = 0. However, as m → 1

2
, the 0-phase becomes unstable,

and as m → −1/2, the 1-phase becomes unstable. The dynamics

of supercooling are modeled by Equation 5, where we introduce a
temperature field governing m(T ).

m(T ) =
α

π
arctan γ(T − Te) (5)

Equation 5 uses arctan to limit |m| ≤ 1

2
. Te is an “equilib-

rium temperature” at which both phases are stable. For compu-
tational convenience, we take Te = 0. γ is a scaling parameter
for the temperature, and α limits the instability produced by out-of-
equilibrium temperatures.

The temperature dynamics are governed by two elements: diffusion
and conversation of enthalpy (Equation 6).

∂T

∂t
= ∇2T

︸︷︷︸

diffusion

+ K ∂p

∂t
︸ ︷︷ ︸

enthalpy

(6)

Phase changes release and absorb energy. In a closed system, en-
thalpy is conserved. This conservation is captured by T ’s depen-
dence on the change in phase in Equation 6. K represents the latent
heat; in our model, K is dimensionless, allowing us to set K = 1
by scaling our temperature appropriately.

(a) (b)

Figure 2: As the boundary grows, heat is released. Because the
heat diffuses faster than the phase, neighboring areas’ growth is
suppressed. As a result, growth of the boundary segment into the
supercooled portion is amplified.

The exo- and endothermic phase changes drive boundary instabili-
ties through a local amplification, lateral inhibition process, shown
in Figure 2. The boundary’s growth releases heat. The temperature
diffuses faster than the phase, limiting the growth of neighboring
areas of the boundary. Meanwhile, that portion of the boundary has
grown toward the supercooled “open space,” which further encour-
ages the growth of the boundary in that direction.

In the case of isotropic crystal growth, the phase field dynamics
simplify to

τ
∂p

∂t
= ǫ2∇2p+ p(1− p)(p− 1

2
+m) (7)

Applying the phase field approach naively to the problem of gener-
ating jigsaw puzzles introduces a few problems. Dendritic solidifi-
cation typically involves a single material in one phase encroaching
on another phase of the same material, e.g. a single, solid piece of
ice growing into an expanse of supercooled water (Figure 3). In this
setup, one phase grows while another shrinks. We would prefer the
simulation to be piece-agnostic and symmetric with respect neigh-
bors’ phases. Rather than one piece acting in a ”growing” role and
another in a ”shrinking” role, the boundary should evolve symmet-
rically, with identical dynamics in both directions. Otherwise, we
introduce an aesthetic asymmetry in the quality of adjacent pieces’
boundaries (Figure 3).

To address the issue of piece symmetry, we treat one piece as super-
cooled and the other as superheated so both phases grow into one
another (Figure 3). (Note this setup is physically meaningless—by
putting a supercooled and a superheated phase next to each other



(a) Supercooled everywhere.

One phase grows down into

the other.

(b) Superheated on the top

and supercooled on the bot-

tom. Each phase grows sym-

metrically.

Figure 3: Demonstration of the aesthetic consequences of
[a]symmetry in phase growth dynamics.

we are taking advantage of the free energy functional’s symmetry
to create the boundary symmetry we require.)

hot hot

cold

(a) Impossible to arrange

hot/cold with no identical

neighbors.

solid solid

liquid

(b) Impossible to arrange

solid/liquid with no identical

neighbors.

Figure 4: Two phases and temperatures are insufficient to preserve
piece symmetry at the intersection of three pieces. Note that phase
and temperature fields are completely independent.

When we attempt to extend this to three pieces (Figure 4) we dis-
cover there is no way to arrange three pieces sharing boundaries
without at least one pair of neighbors sharing a boundary and a
phase. While we could consider the problem of laying out regions
to ensure no two neighbors are in the same phase (e.g. four regions
can be arranged to ensure no two neighbors share a phase), in the
general case this is impossible with only two phases. Instead, we
assign each piece its own, independent phase. In order to main-
tain each piece’s superheated/supercooled temperature relative to
its surroundings, each piece also requires its own, independent tem-
perature. To do this, we need to extend our solidification model to a
multiphase simulation. Rather than representing traditional phases
of matter (e.g. solid, liquid, gas), we now have infinite phases rep-
resenting a more abstract “state of matter.”

We apply Steinbach et al’s approach to multiphase dynamics [Stein-
bach et al. 1996]. In the two phase example, one phase is repre-
sented implicitly, e.g. pliquid = 1 − psolid. In the multiphase ap-
proach, each phase is represented explicitly such that

∑

i pi = 1.
The one aspect of our dynamics requiring adjustment is the poten-
tial function. The most important characteristic of the boundary’s
free energy is how it defines the relative stability of the 0- and 1-
phases. Because we have numerous, arbitrary, overlapping phases,
we need a functional which preserves the double-well behavior but
which can handle many phases. We define such a pair-wise phase
potential:

mij =
m(Ti) +m(Tj)

2
(8)

F ′(pi, pj) = pipj(pi − pj +mij)) (9)

F ′
i (pi) =

∑

j 6=i

F ′
i (pi, pj) (10)

Equation 10 expresses the potential of each phase as the sum of the
pairwise potential of all phases.

4 Initialization

The multiphase field approach outlined here is very flexible—it
only requires a set of boundaries, phase fields, and temperature
fields. Many approaches to defining the initial piece boundaries
are possible. The boundary definition step is completely separate
from their subsequent evolution per the dynamics defined by our
free energy functional (Equation 1).

In our system, we’ve included whimsies—well-defined, recogniz-
able shapes artificially placed in the puzzle. These shapes do not
change; we treat them as reflective boundary conditions. The re-
maining pieces’ initial boundaries are formed through a reaction
diffusion-process, creating an approximate, generalized Voronoi di-
agram of a set of starting seed shapes.

In the simplest case, initial seeds are placed via dart throwing
[Runions et al. 2005]. Points are randomly generated and discarded
if they are within ρ of an existing seed. This generates a random
set of points of approximately fixed density, a specific case of blue
noise. The initial seeds can also be generated in other configura-
tions, e.g. uniform grids, phyllotactic patterns, or arbitrary sets of
lines and curves. Each initial seed i is assigned a unique chemical
Ai which diffuses out and reacts with its neighbors. Each chemical
activates itself at a rate µ and inhibits all other chemicals at a rate
ν, governed by the dynamics of Equation 11:

∂Ai

∂t
= ∇2Ai + µAi − ν

∑

j 6=i

Aj (11)

The process stops when a minimum concentration ct exists every-
where. The boundaries of each chemical region at this time define
the initial piece boundaries.

We then add two families of sinusoidal noise of wavelengths λi and
Ui, i ∈ 1, 2 to these boundaries. In our system, λ2 ≪ λ1, meaning
that we are effectively adding gross- and fine-scale perturbations
to initialize the simulation (Figure 5). Again, this process defines
our beginning boundaries but is by no means the only process for
initializing boundaries.

After defining the initial boundaries of the pieces, we randomly
assign each piece a phase. We designed our framework assuming
each piece is assigned a unique phase. Because our simultation’s
computational complexity scales with the number of phases, we try
to minimize the number of distinct phases we use.

Assigning phases so that no neighbors share a phase—functionally
equivalent to assigning each piece a unique phase—is a specific
case of a well-known problem in graph coloring. In 1976, Ap-
pel demonstrated that four colors is enough to color an arbitrary
planar graph with no neighbors sharing a color [Appel and Haken
1989]. Finding that arrangement for four phases is computationally
demanding. The “five phase problem” is much more tractable. To



(a) Boundaries defined by

the concentration fields af-

ter the reaction diffusion pro-

cess.

(b) Pieces with boundaries

perturbed by sinusoidal

noise at wavelengths λ1 and

λ2.

Figure 5: Initialization of piece boundaries with a combination of
dart throwing, reaction diffusion, and boundary perturbation.

find this layout, we take a hill climbing approach, randomly assign-
ing each piece one of five phases, searching for pieces with a color
conflict, and toggling their color to resolve the conflict. If we find a
situation we cannot resolve by a single color change, we start over.

At this point, we’ve placed our pieces, defined their initial bound-
aries, and assigned their phases. The initial phases and temperatures
for a piece i are set to pi = 1 and Ti = −T0 and pj = 0 for j 6= i
and Tj = T0 for j 6= i.

5 Results

To generate the final puzzles, we predefine sets of parameters repre-
senting different cut styles. These parameters control the method of
seed generation for initial boundaries, the wavelength lambdai and
amplitude U of the boundary perturbations, and local parameters of
the dynamics such as temperature sensitivity and supercooling. We
then generate different regions of the puzzle and assign them differ-
ent parameter sets to create multiple cut-styles within one puzzle.
Figure 6 shows examples of different cut styles

Note that initial shape and boundary perturbations can strongly af-
fect the character of the resulting pattern. This result is consis-
tent with solidification experiments demonstrating the dependence
of dendrite form on seed spacing [Diepers et al. 2002].

6 Conclusions

We’ve made some really awesome jigsaw puzzles, but opportunities
for improvement still remain. By reducing the number of phases
to five to increase efficiency, we create a problem of temperature
bleeding. Locally, each piece is roughly in a supercooled environ-
ment; but over time, the temperature of pieces with the same phase
spreads to one another. Dendrites “melt” into less detailed nodules
over the course of long simulations. This could be avoided by in-
creasing the efficiency of the simulation through adaptive grid or
domain methods and preserving a unique phase for each piece.

We could also explore extensions to the solidification model and
related systems which can be simulated with phase-field methods.
More complex solidification models incorporate additional physical
characteristics, such as crystal anisotropy, chemical concentrations,
surface tension, and fluid flow. Incorporation of these characteris-
tics would allow for more cut style variety.

Other Laplacian growth problems have been approached using the
phase-field method. Hele-Shaw cells are one such example [Folch
et al. 2009] which may be a fruitful area to explore for cut style

inspiration. Unlike solidification simulations, Hele-Shaw cell sim-
ulations are phase conservative, making it more conducive to the
evolution of puzzle boundaries.
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(a) Standard cut: Dart throwing with ρ = 45, λ1 = 20, λ2 = 4,

U1 = 8, U2 = 1, γ = 35

(b) Grid cut with cat whimsy: Regular grid seeds with ρ = 55,

λ1 = 20, λ2 = 4, U1 = 8, U2 = 1, γ = 35

(c) Linear cut: Seed with line segments in the same direction, λ1 =

20, λ2 = 4, U1 = 8, U2 = 1, γ = 35

(d) Amoeba cut: Dart throwing with ρ = 45, λ1 = 40, λ2 = 4,

U1 = 8, U2 = 2, γ = 35

Figure 6: In all figures the grid spacing △x = 0.024, the time step △t = 0.00015, ǫ = 0.008, τ = 0.0003,α = 0.9, and T0 = 0.3.


